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Abstract. Hecke algebra deformations of the wreath prodtigt S, arise in solutions to the
Yang—-Baxter equations with boundary (the reflection equation). We use a simple diagrammatic
approach to construct bases for these algebras. We hence introduce quotient algebras suitable
for constructing physical solutions to the reflection equation, with a well-defined thermodynamic
(largen) limit. For all 4 andn we determine the generic representation theory of these algebras,
developing a formalism suitable for the analysis of correspongisgin-chain Hamiltonian and
transfer matrix spectra.

1. Introduction

Let C,; denote the cyclic group of ordér andC, : S, thewreath productwith the symmetric
groupS,. Just as the ordinary Hecke algelifa is ag-deformation of the group algebra of

S, [23], so a Hecke algebra @f; : S, is a multiparameter deformation of the group algebra of
C; S, [10]. These algebras are important for solvable models in two-dimensional statistical
mechanics because, just as representatiorf$,ahay be used to construct solutions to the
Yang—Baxter equations (YBES) [7]

Ri(01)Ri+1(01 + 02) R; (02) = Ri+1(02) R; (01 + 02) Ri+1(61) @)
[Ri(61), R;(62)] =0 i#Fj£1 &)

sotheir representations may be used [29] to construct solutions to the YBE with boundary;
i.e., with the reflection equation (RE) [11, 19, 42]:

R1(01 — 02) K (01) R1(01 + 02) K (62) = K (62) R1(61 + 02) K (61) R1(61 — 02) (3)
[R:(6"). K(®)] =0 P22 4)

These algebras include Breand Malle’scyclotomicHecke algebras of typ6(d, 1, n) [10]
here denoteg@?, and the specialized ‘Hecke algebra extension’ [29, theorem 1]kcasé—1)
here denote®’.

In this paper we consider the problem of constuctiysically usefukolutions to RE
usingG¢ andD?. The main difficulty here is similar to one which arises in solving the bare YBE
usingH, [23,32]. Thatis, there is no obvious thermodynamic or lardienit algebra—cf for
example, the well-behaved Temperley—Lieb algebra constructions, which may be tied directly
to the Bethe ansatz [4, 28, 45]. As the Temperley—Lieb example suggests, a resolution of the
problem forH, lies in therepresentatiorobtained fromU,sly invariant vertex models [34].
Fixing N, this representation is very far from faithful in general, but the corresponding quotient
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1266 P P Martin et al

algebra, denoted V, is still richly interesting (indeed the Temperley—Lieb algebra is the case

N = 2), and has a well-defined largelimit. In this paper we generalize this well-behaved
quotient to the cyclotomic algebras, and hence develop a direct analogue of the representation
theory tools used in [34, 35] to analyse quantum spin chain Hamiltonian spectra. We do this,
however, without needing to construct an analogue for the rol& ofy.

(In addition to their role in solvable models it is also thought that these algebras may
be useful in constructing knot invariants in higher genus [27], and in asymmetric diffusion
modelling with generalized boundary conditions [2, 3]. For further examples of potential
physics applications see [14, 15, 20, 30, 3840, 42]. The cyclotomic algebra has also been the
subject of some beautiful and rarefied mathematical work [5, 6,16,17].)

If {A,ln = 1,2,...}is a sequence of groups or algebras obeyingc A;.1 we write
A_ for this sequence. In [34, 35] it was shown how to construct a global (‘thermodynamic’)
limit HY for the sequence of Hecke algebra quotient algek#&s This result was used to
determine quantum spin chain level crossings. In seeking the same facility for cyclotomic
Hecke algebras? (resp.D?), or indeed generally, there are a number of technical challenges
to be overcome:

e A quotient algebra_ajf of G¢ with a global (largez) limit must be constructed (cf [34]).
e In particular, globalization and localization functors must be constructed (relating the
operators for measurement of given observables, such as spin—spin correlations, on

differentlattice sizes)—this means we need an idempotert Gf (somer > 0) such
thatYG., ¥ = G. for all n [34,35].

e The representation theory of the quoti@ﬁ/@jY@Z must be determined (giving the
iterative step in the representation theory analysEZolby iteration orm).

o Ideally, we must construct a vertex model (tensor space) representation (cf [41]); and

a weight lattice indexing simple modules, with a geometry induced by the limit form
of induction and restriction of generically irreducible representations in the sequence

6:(11 =12...).

This paper is in two parts. In sections 2 and 3 we develop the diagrammatic bagis of
which is to be our main computational tool. First we give a diagrammatic representation of a
spanning set-braid diagrams[9] are already familiar in the physics literature [26], and we
use variations on these. We then determine linear independence by reference to the ‘generic
representation theory @, a ‘deformation’ of the standard representation theor§6f : S,

(ct[6]).

In the second part (sections 4 and 5) the challenges above are dealt with for the generic
algebras, i.e. fog not a root of unity and all other parameters also generic (by using diagrams
we develop a formalism suitable for generalizing to the exceptional cases, but these will be dealt
with specifically elsewhere). The main technical results are encapsulated in propositions 19
and 21. A striking feature is the extra layer of symmetry in ﬁﬁieformalism cfHY, the
potential utility of which is exemplified in an application #) in section 5.

The remainder of this section is occupied with a review of essential background material
and the motivation and definition of.

’

1.1. Braid diagrams and the Hecke algebids

We use the notations of [34] unless otherwise stated.Krarring andG a set,K G denotes
the freeK-module with basi<.
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The n-string braid group B, [9, 26] may be generated by a set of adjacent pair braiding
operatordg;, glf1|i =1,2,...,n — 1} represented by diagrams of the form:
1

LRI <111
(hereafter we will omit the bounding box). Composition is by vertical juxtaposition (consider
gigi_l = 1), and braid equivalences are illustrated, for example, biptaiel relation

/ /
ARV
/ /
/ / (6)

The strings in a braid may be labelled 1rt@s indicated in (5). Aoure braidis an element

of B, in which the order of the string labels as read across the bottom of the braid is again 1
to n (for exampleg? is a pure braid). It will be evident that the set of pure braids is a normal
subgroup of3,. The quotient group is,, [9].

Let A be aK-algebra defined by generators and relations. #o¢ A a word in the
generators writev” for the word obtained by writing these generators in the reverse order.
Suppose that the set of relations is invariant uridéas inCs,,, for example). Fox € A let
xT denote thek -linear extension of this operation. ThenWf C A is a leftA-module,M7 is
a right A-module.

DefineG, = 1andG,, = g,-1G,,_1, i.€.

X

X GT =
X

n

o

W, = {1, g1, 8182, ... 8182 .- 8m-1} = {G1, G5, G5, ..., G] }.

m

The inner automorphism : b +— G;len of B, takes the subgrouB,, C B, braiding the
first m strings(m < n) to an isomorphic subgroup braiding strings 2sto+ 1. We write
b+ bW for the image ob € B,,, b®@ for (b™)® (where defined) and so on.

For g indetermine letC, denote the ring of Laurent polynomial§[q,¢~]. The
Hecke algebraH, is the quotient of group algebrd, 3, by the ideal generated by element

(g1 +¢? (g1 — 1) [8]. This H, is a freeC,-module of rank:! [23], in which the generators
obey relations

and define

(g +q)g -1 =0. )
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Some workers use = gg; obeying(t; + ¢)(t; — ¢~1) = 0; and it is often convenient to work
instead withU; = ¢~%(1 — g;) obeying
U =(q+q DU (8)
Let K be afield such that there is a ring homomorphism
f:Clg.q7Y — K.
Then K is a C[q, ¢g~!]-module by restriction, and we can defing-algebraX H, =
K ®cpq.q-q Ha. In particular, fork > Clg,q '] put *H, =: H,(¢), and forkK = C
andf : g~ g. € C\ {0} put H, =: H,(q.). For exampleH, (1) = CS,.
The set of braids generated using ghepictures in equations (5), (6) spah, (and of
course any otheB, quotient algebra). Althoughot in general linearly independent in the
quotient these braid diagrams still form a useful pictorial realizatia,ofand it is possible to

identify subsets whichrelinearly independent (some of which subsets are still spanning). For
example, consider the group homomorphism from the braid group onto the symmetric group

P:B,— S
. n n (9)
P:bw— P()
that is, where the permutatiadn(b) takesi to j if the string in braidb starting at position at
the top runs to positiofi at the bottom.

Proposition 1. Any subsef” of the domain ofP for which the map is a set injection is still
linearly independent in the quotieik, .

To see this recalCs, = H,(1). Suppose there is a linear dependence in the imageiof
H,—then there is still a linear dependence wjth= 17.

For R a ring anda,b,...,c € R defineW(a,b,...,c) = ab...c. A natural
basis of H, [23] is the basis of reduced word8/¢ = W (x"_, W), For example,
WP x W) = (1, ¢1). There is a length function lgh) on this basis given by the
number of factorg; (so lenl) = 0).

1.2. Motivation: Solutions to the YBEs

Putg = expiy) and define f] = sinxy (to be understood as a limit = 0), so

siny
2cosy = q +g~ 1. Then puttingl; = ¢~ (1 — g;) in H,(¢) we find that
R;(6) = sin(y +6)1 — sin(®)U; (10)

gives a solution to equations (1) and (2). By varying the representatiij(gf such solutions
include the ones appearing in the critical Potts [7], Andrews—Baxter—Forrester [4], vertex [41]
and other physical models. Putting equation (10) into equation (3) we get

SiN(f1 + 62) Sin(01 — 02)[U1K (61) U1, K (62)]
= sin(y + 601 — 02) sin(01 + 62) (K (01) U1K (02) — K (02)U1K (61)U1, K (01))
+sin(y + 61+ 602) sin(01 — 02) (U1K (01) K (02) — K (62) K (61)U1)
—sin(y + 61 +6,) sin(y + 6, — 62)[K (61), K (62)]. (11)
This is non-trivial to analyse, but generators and relations for extensioii @f) which

give solutions for a variety af values are observed in [29]. (Note that these solutions obey
[K(61), K (62)] = 0.) Some examples now follow.

T Possibly a given linear relation may factor Gy — 1)—then one must divide through ky — 1) before putting
g =1, and so as a proof this is incomplete. We will omit discussion of the torsion-freenggsasfaC,-module in
the interests of brevity—see [23, 36].
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Definition 1. Fix x = (x4, ..., x,;) ad-tuple of scalar parameters such thia;, — x;] = 0
impliesi = j. AlgebraD?(q, x) has generator§1, Uy, ..., U,—1,v(1),...,v(d)} and
relations U? = [2]U;, UiUiU; — U; = UjsqU;Uisq — Use, [Ui, Uiej] = 0 (j > 1),
Y v@) =1[U;,v()] =00 > 1),

v(@)v(j) = 8ijv(j) 12)

M(U(k)ulv(l) —v(OHUw (k) (k#1D).
[xx — x7]

(This is [29] theorem 1 casg # 0 andk = d — 1—the variablec;; there is given by
cij = —isiny% wherem = x; — x;; and

[Uv()Ug, v()] =

d
K@©) =) wi@)v()
i=1

where thew; (6) are certain scalar functions. Note that corollary 1.1 of [29] is false except in
this case.)

Definition 2. For A = (A1, ..., Ay) a d-tuple of scalar parameters the cyclotomic Hecke
aIgebrafo = fo(q, A) is the extension of the generators and relationg#pfq) by a new
generatorX obeying[g;, X] =0( > 1),

d
[[x-xD=0 (13)
j=1
[s1Xg1. X] = 0. (14)

(This is also known as the Ariki—Koike algebra [6].) It will be evident that these definitions
are self-consistent, and that both algebras comi&ify) as a subalgebra. However, the result
implicit in [29] that these algebras may be given the same basis for any choice of parameters is
not obvious—indeed, the stronger implicit claim that a more general algebra has this property
is false (see section 2.2). Identifying the copie#lpfq) in each algebra we may map between
them when; = g% by X — X;v(i) (see section 5.1).

Recall thatS, has generators; = P(g;) = (i i+1) (this last is thecycle notatior{21]).

Definition 3. The groupCy,: S, is the extension of,, by a generator, with relationsr? = 1,
to1101 = oyto1t (cf the reflection equation (3)) arjd, 0;] =0 (i > 1).

For example(;: S, is the hyperoctahedral group [6, 10, 22].

Note, withi; = €7//? andg = 1 (resp.x; = j/2d and, as it wereg = €#') G (resp.
DY) maps isomorphically to the group algebra o@&of C, : S, [6, 10] (cf equation (13)).
We will show in section 2.2 thad?(g, x) may be given the same basis for each choice of the
parametersg?(q, ») hasthe same property [6]). These algebras are, in that slisenations
of CC,: S,,, and a study of their representation theory is informed by a study, ofS,, .

1.3. The conjugacy classes@j : S,

The generators; of S, may be represented as in equation (5), but ignoring the ‘over/under
information, since by equation (9) we haRég;) = P(gi_l). Inthese pictorial terms € C;:S,
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may be thought of as a ‘bead’ living on the leftmost string. Thus we have (here:with)

=]

and so on. Put; = t andt; = 0;_17;_10;_1 (‘Murphy elements’). Depict, = 011071 by

TO17T01 =

(15)

Pursuing this realization, the bead canrbeved onto any different strirfyy conjugating by
an appropriate permutation, andis a bead on théth string. The consistency of this picture
is ensured by the relation{roy, t] = 0, which implies ;, t;] = 0.

Clearly every element af; : S, can be arranged (e.g. here with= 6) in the form

w = (ﬁf{’) P = P
i=1

REREE (16)

(whereP € S,) by pushing all the beads on the strings to the top. For example,

T

where the intermediate step shown is the explicit verification, via equation (15), of the move
used on the first bead. Then immediately

Cy 2 Syl = |S,1d" = nla". 17)

Recall that conjugacy classes$fmay be characterized by the unique cycle structure of
their elements [21]. Possible cycle structures are indexed by the Young diagrams of.order
Thus the equivalence classes of simple module$;, @ire indexed by the same set [13, 21].

Definition 4. Let A = (A%, 2%, ..., %) be an orderedd-tuple of Young diagrams, with
Al = IA| = n. Thenr? is the set of all such-tuples.
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Suppose we represefRte S, as a product of commuting cycles. If the elemeng C,: S,

is as in equation (16) then conjugation Bye S, would not change the cycle structure, nor
change the total number of beads attached to a given cycle (and so neither would conjugation
by any element o, : S, D S,). Thus a conjugacy class 6f; : S, is characterized by the

cycle structure together with@lour or weightfrom 1, 2, . .., d for each cycle. Sorting the
cycles into sets of fixed weight we arrive at the following proposition.

Proposition 2. Conjugacy classes @f;: S, are in 1-1 correspondence withtuples of Young
diagrams of summed degree Equivalence classes of simple modules, botiCfor S, and
for its group algebra ovet, are also indexed by¢.

2. On constructing deformations of CCy4 1 S,,

Consider deformingC, = CC,;: 81 € CCy: S, as follows. Fixd € N and ringK, and for
o = (o1, ..., aq) indeterminates ik let T[«] be theK -algebra generated by 4, obeying

d
l_[(l'g —a;1) =0. (18)
i=1

ThisT[o] has basi$l, 7, ..., rgfl}. Letk; = [],;(@j—a;). Forj =1,..., dthe elements

v, (j) = ]_[,.#(rg — ;1) obeyv,(jv, (k) = «;8xv,(j), and are distinct. That is, K; is
invertible in K then/cj‘lvu (j) is a primitive central idempotent. K = C we think of T'[«]

as providing a set of algebras, one for each pairih parameter spacg€?, each with the
same basis. Apecializatiorof T[«] then provides a closed subset of this set (usually, but not
necessarily, the algebra at a single point in parameter space). A specialZaiigrof 7[«]
overC is semisimple provided that = o only if i = ;. Since this condition is satisfied on

a (Zariski) open subset of parameter space it igericsituation. Conversely, thip, (j)}

are no longer all distinct in the non-semisimple specializatigns «f,,, somei. Either way,
whenk = C ande; = 4;, T[a] = G — GZ.

On the other hand, let = D{, the C-algebra generated hy(1), ..., v(d). If Ais a
commutative, semisimple, unit@lalgebra of dimensiodi it is isomorphic toV. In particular,
thegenericspecializations of’ [«], such asCC,, are isomorphic td/.

Let A be ad-dimensional unital algebra ovét. We may generalize the group algebras
of the sequenc€, : S_ = {C; 1851 C --- C C42S,} (noteC,; = C, 1 S1) to a sequence of
C-algebrasi? = {H{ C --- C HA} (A = H{) as follows. Start withs, and introduce, for
eachp € A, an element, € H? such thatp — t, is an algebra homomorphism dfinto
H2 (e.g. there is arelation, 7, = t,,, depicted:

“ | ]

Tp,01Tp,01 = 01Tp, 01T, (19)

cf section 1.3) and

(the reader may care to draw the diagram for this relation).

Proposition 3. Letz, and 1 generatel. Thent,o17,01 = 017,017, implies equation (19).
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Henceforward lefd also be commutative. Theticould be anyl'[«*]. In this case there
is a parameter space of algebtgsincludingCC,: S,, and they are collectively a deformation
of CCy 1 S,.
We call a sequence of algebrAs aHecke-typaleformation of4, cf Hoefsmit [22], if:
(I) a set of generators db, are the generators @, plus the generators of; (II) A andH,
are subalgebras db,; (Ill) the identity elements oD,,, A andH,, coincide; (IV) [g;, A] =0
fori > 1;and (V)D,_1 C D, (note thatD, = A).
To generate such a deformation we can proceed by writing down certain new relations
involving g; andA (defining D»), and then checking for consistency.

2.1. Thecase =2

For K afield andD any K -algebra which is a quotient by some relationsf the free product
of two subalgebragH, A) (say), withD, H, A all having the same unit, then trivially there is
an inclusion ofK -modules:

(H, A)] ~ — HAHAHAHA ... (20)

Proposition 4. Let D(v) be aK-algebra which is a quotient of the free prodyéf,, A), and
in which asK-modules

AHAHy < HoAHRA. (1)
ThenD(v) has dimensior{2d2.

Proof. Any relations such that equation (21) is satisfied allow us to truncate the set of words
required to span the rhs of equation (2084 H>A. Since din{H,) = 2 and dim{(A) = d
we require no more thand2 words. O

We now construct relations such thatD(g = 1) = Hj,. One way to proceed is to

identify A with T[«] and require equation (14) (see [6]). However, it turns out thean take
an importanphysicalrole, so here instead we taketo be commutative and semisimple. We
thus havedA = CC,; = V. The image offv, (1), v,(2), ..., v.(d)} under this isomorphism
is anorthogonal(and normalizable) basis fof. (If A is non-semisimple such a basis does
not exist—for example, considef, = «». Thus the algebra we buildannotbe identical
to the Ariki—Koike algebra, but merely generically isomorphic to it.) Without further loss
of generality consider the relations d and A separately in the fornii]i2 = [2]U; and
v(i)v(j) = 8;;v(i). There are at mostZinequivalent one-dimensional representationarof
algebraD(v) obeying these, givenhy=1,2,...,d in

R:i(U1) =0 R_;(U1) = [2] (22)

Ry (v(j)) = éij (23)
(new relations might kill some of these representations—such relations would not be consistent
with specialization tat4, sincethis clearly has 2 one-dimensional representations: i.e.,

precisely those obtained by puttigg= 1 in the abovet). Further, it is easy to verify that any
two-dimensional irreducible representation of such an algebra can be written in the form

a _ a a([Z] - (1)

Rij(Ul)— (1 [2]_a ) (24)
a _ aik 0

R (v(k)) = < 0 Sjk> (25)

t Theseti indices correspond to= (0,0, ..., 0, (2),0,...,0 andx = (0,0,...,0, (12,0, ..., 0), respectively,
in the classification scheme for irreducibles to be given in section 3.
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wherei # j anda is some scalar. In fact, for an isomorphism wity we required(d — 1)/2

such representations, and these may without loss of generality be indexed by all ordered pairs
(i, j) suchthat > j > i > 1 (again, cf section 31). We can see this as follows: putting

[2] = 2,a = 1 each of these is readily checked (by taking the trace(®) to be a distinct
irreducible representation ¢f2. Taken with the one-dimensional representations this set
saturates the total dimension of the algebra, ide. 2 + () - 22 = 2d?, so there are no other
irreducibles. In the deformation we aab initio free to choose distinct in each case (call it

a = a;;). Not withstanding this freedom, all the ‘representatioRs; ande;"' obey
ag Ly (k<1
U (k)Uy, v(D] = 26
WwOULOI=\ 2~y @ <p (20)

where
Lij = v(@)Urv(j) — v(j)Urv(@)

by direct computation. That is, these relations are necessary for a deformation of Hecke type.
On the other hand, they ensure equation (21), so equations (26), (8) and (12) ardfalsmt
to define the most general deformation?®f of Hecke type (i.e. up to (1V)) in whickt is
semisimple. Let us call D4 (q, a_), with a_ symbolizing the list of indeterminate scalas.

The algebrdd (g, a-) hast‘l) + 1 parameters (counting. The algebras is section 1.2
haved + 1 parameters. The extra parameters will disappear once we apply condition (1V).

In terms ofg; the relations (26) are

(1= qgap) (k) g1vd) — v()g1v(k)) (k <)

27
(—q% + qan) (k) g1v(l) — v()grv(k)) ( <k 27)

[grv(k) g1, v(D] = {

or, equivalently,

[g1v(k)g1, v(D] = b (v(k)g1v () — v(D)grv(k)) (28)
whereby; = (1 — qa)(k < 1), andby; = (—q2 +qgay)( < k), SO thathy + by, =1 — qz.

2.2.D¢ diagrams, the case = 3, and generah
LetD? be a sequence of algebras such that= DJ(q, a* ), a* some restriction ofi_.
Definition 5. For B € D?_, defineB4(B) C D¢ by

BY(B) = (v(i)GTb, g1v(i)G b, g281v()G!b, ..., G,v()GIb|be B,i =1,2,...,d)
(29)
and defineB! = BY(B?_,) whereBg§ = {1}. (Note that BY| = n!d".)

The construction is illustrated schematically in the individual components of figure 1, where
we introduce diagrams for elements and subser ofAs for braid diagrams these diagrams

are to be understood as being embedded in the plane, with implicit rectangular bounding box.
In this scheme (cf the scheme in [34]baxacross the first: lines may represent an element

or set of elements d?,. A box across any other adjacent lines may only represent elements

of the correspondingf,, subalgebra. Note that a simply connected component of a diagram
which component contains only string (no beads) may be manipulated as if it is a similar
connected component of a braid diagram without changing the algebra element represented.

T Theij indices correspond to the positions of the non-zero entriesin0, 0, 0, ..., 0,(1),0,...,0,(1),0,...,0).
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Figure 1. Pictorial representation @ decomposed &-submodules.

Proposition 5. If B is a spanning set fop?_, thenB4(B) is a spanning set fop.

Proof. The module spanned here may be depicted as in figure 1. We must show that this

module is closed under, say, left (or, in the diagram, top) actiaf ofNow it is closed under
action ofH, c D? since

g (gk8i-1---81AGID?_)) = (grgi-1-..§1AGI D)) (j#kk+1)
by g,'szl = fol(i < n),and

Tmd - 40D T d Td
8k (gr8k-1---81AG, Dy 1) C (gk8k-1---81AG,D;_ 1)+ (gk-1...81AG,D;,_y).

It closes undep (i) € A since by equation (26) or (27)

) eqn(26)
v(i)(81A8182 - .- 8n-1D;_1) S

81Ag1Ag283. .. gn—1Dl_y + Ag1Ag2gs. .. gu—1Dl_;
C 81Ag18283- - - gn-1D)_1 + Ag18283. .. gn—1D)_;.
O
It follows that B¢ spanD¢ (the caser = 1 is clear).

Proposition 6. The elements of B¢ may each be expressed in the farre: hj,v, whereh, is
an element of the reduced word basighfandv, is a word of the form
Vp = U(iliZ oo ln) = U(il) 8182 .--8n-1 U(iZ) 8182 ---8n-2 U(iS) cee v(in—l)glv(in)~

Gy Goa

n

This decomposition is shown schematically in figure)2{The wordv, may be characterized

by the list(is, ..., i,) (i.e. reading the diagram from top to bottom). This list is called the

signatureof b.
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(a) (b)
w3
—
1 Wa

w3
gy m Wa
o
! |
g i) m
mk i) m

X

Figure 2. (a) Pictorial representation of a re-expressiorBét exhibiting a basis o3 (elements

of form wgwél) with w,, € W,‘,LO)) as a ‘factor’; andlf) pictorial representation of the (right) action
of g2 on B‘31, exhibiting the reduction to a calculation equivalengm}g.

Figure 2p) shows schematically that the sub@i) of elements ofB¢ for which the
signature is a permutation ¢f, 2, . . ., n} spans a right submodule, if it exists (i.edif> n).
In particular, we see that the effectgfacting from the right (from below) is to takke= kv,
with signature (1,2,3) (say) to a linear combination of words with signatures (1,2,3) and (2,1,3).
It follows from proposition 5 thaB? is linearly independent if©C, : S,. We require it to
be so in general. A necessary condition for this is tﬂ@} is a basis for a representation.
An explicit construction shows that the right actions of the generators on this subset do
produce a representation bf (g, a_). Specifically, R(g1g281 — g28182) = b123M where
b1z = (b12ba3 + ba1b13 — bisby3z) and matrixM # 0. Thus we must require that the
parameters;;; lie on the varietyb1o3 = 0 (d = 3) and more generally on the intersection
of varietiesN, - jx (b;jx = 0). We may restrict to this variety by putting
[.X,' — Xj — 1]

[xi —x;]

for some new set of free parametérs, . . ., x;}. Other restrictions involve the vanishing of
one or more;; (considerb, = b1z = 0in byxz)—see [29]. Folg| # 1 this can be achieved
from equation (30) by taking a larde; — x;| limit. Henceforward we will restrict attention

to the algebras whose parameters are obtained as in equation (30)—deéfoted? (¢, a),
or D%(q, x) as in definition 1 Note that this requires care in the choice of ground ring.

For eachk € {1, ..., d} there is a natural surjectidpf LY D4-1 given byv (k) — O.

Cl,'j =

(30)

Proposition 7. If B is a basis foD?_, thenB?(B) is a basis foD?.

n

Proof. It is enough to show thak? is a basis 0b?. We have so far shown th&’ spanD?.
Thus (formally) rank(d?) < |B?| = n!d". Suppose now that there is a linear dependence
in B4, This would also show up over any ring containing the ground ring (such as the field
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of fractions). The next section will conclude this proof by showing that there can be no such
linear dependence (it will show that the dimension over such a field is atle&9t O

3. Generic representation theory

We first reviewouter productsof S, [13,21]. Atableauof shape. € I'? is any arrangement
of the ‘'symbols’ 12, ..., n in then boxes ofr, and a tableau is standard if each component
tableaur’ is standard. We will denote the set of standard tableaux of shage

T =T}, T),...., T}, ...}.
We define an order on rows afby placing the whole of component diagrani® undera’.
We then define an order on standard tableaux of shapdy

T < T}

1

if the highest number to appear on a different row is in an earlier roi!/y\in

Let T[;\ be atableau. We defira:e(T[;\) as the tableau obtained by interchanging ‘symbols’
i andi + 1. Note that this action does not necessarily take a standard tableau to a standard
tableau. We definej(Tlf) = —lj,-(T;) as the reciprocal of the signed hook lengthfrom i
to j in T/, puttingl;;(T,) = 0if i and;j are in different components.

Let R* be the space spanned BYy. If u is a diagram (i.e. d-tuple withd = 1) then
under a suitable actioR* is a simple module fosS,, associated to that diagram. We write
dim(u) = dim(R*) for the dimensions of these simple modules.

Proposition 8. The setT* is a basis for the leff, moduleS,,(@;’;lR”) (the outer product
MR A% ... r%) with action

o) =T, i,i +1in same row off} (31)
0T} =—T; i,i+1in same column (32)
and ifa,-(T[;\) is standard (note, this covers all remaining cases) aﬁdl,»,-ﬂ(T[;\)
0T, = FtT; + L+ 0)oi(T)) i in a lower/higher row tharni + 1in T, (33)

This is a standard result (see [21] and references therein). Motivated by consideration of a
generalized Andrews—Baxter—Forrester model, a suitable generalization of proposition 8 to
genericH,, in case all\’ are single row diagrams, was given in [31]. Rixad-tuple of
complex numbers, and defing thegeneralized hook lengtin Tp* by

x _ 1,0 . .
hij _hij +x; — X

whereh?j is the hook length obtained by superimposing the diagrams contdimind; (see
also [32, p 244]). The idea is to replace the hook length by the generalized hook length. In
fact this works for arbitrary., shown as follows.

Proposition 9. T* is a basis for a left,-moduleR” with action
Ty =T, i,i +1in the same row of ; (34)
&T) =—q°T; i,i+1in the same column (35)
and ifo; (7)) is standard andk = hj,,,

T [h]—[tz[]hﬂ] —q{;:]—ll T N N
g P ) = < _ A > < P > T, <o,(T)). (36)
(Ui(T;) q[[:]ﬂ] 1] [qh[]h 1] Gi(Tp}‘) P P
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Proof. The quadratic and commuting relations are readily checked. For the braid relation there
are various cases to check by explicit calculation. We start with the case in ivhieh, i +2

are each in different parts iﬁ; Definery(h) = % A direct calculation shows that
R(g1)
1—ri(h1)  —r_(h12) 0
—r+(h1))  1—r_(h12) 0
_ 0 0 1-ri(hz) —r_(h13) 0
- 0 0 —ri(h1z)  1—r_(h13) 0
0 0 0 0 1-ri(haz) —r_(h23)
0 0 0 0 —r+(h2z) 1 —r_(h23)
R(g2)
1—ri(h23) 0 —r_(h23) 0
0 1- r+(h13) 0 0 —r_ (h13) 0
_ | —re(h2o) 0 1—r_(h2) 0
0 0 0 1—ri(h12) 0 —r_(h12)
0 —r+(h13) 0 0 1-r_(h1a) 0
0 0 0 —r+(h12) 0 1—r_(h1)
give a representation df; for anyhi,, hy3, provided that
ho3 = hiz — h1o. (37)

Now consider an;T,f and some such that is in an earlier part than+ 1, andi + 1 isin an
earlier partthan+2in TI;‘. The actions of;, g;+1 onT* block diagonalize, with a typical block

of the form(7}), 0:(7,), 0141(T}), 03 (011(T})), 0141(01 (T})), 01410 (0141(T;)))). Note that

the matrices above describe the actiog0g;+1 (resp.) provided, = A}, h13 = h};,,and

hos = hi,4,;,,—the hooklengths iﬂl"p*. Since these obey equation (37) we have arepresentation
of H, for any choice ofx which avoids generalized hooks of length zero. Provided all the
diagrams are standard this calculation also works in case fewer parts are involved.

To check cases involving i + 1 in the same row or column we note that our calculation
verifies a representation in case all tableaux (not just standard) are used, except that there can
be some zero divides. To see this consider the case #fl adjacent in the same row. Then
hi,,; = 1 and the representation may be decoupled into a part involving the standard tableau
and one involving the non-standard. Nonetheless it is still a representation, so the proof is
complete. O

Proposition 10. The action ofu(i) given by

T) symbol 1 appears i’

0 otherwise (38)

v()T) = {
equipsR* with the property 0b?-module, with parameters determinedsy

Proof. This is another set of explicit calculations. The commutation relations are readily
checked, so we are left with equation (28). This is easily checked on restrictih to O

Note that the representations@j: S, in propositions 8 and 10 are recovered in the limit
of all the differences; — x; large.
Note that7* = U, T~ , wherej. — ¢/ denotes removing a box from thth row of the

Jjth part, and the sum is over paigs j) such that. — eij e I'Y_,. Thus we have the following
proposition.
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Proposition 11. The generick* restriction rules fod?_, c D¢ are
Re¢_,(R") = P R*. (39)

J
¢

For exampleR(®)>() = R(@D.M) g R()9) a5 ap2-module.
There follow two explicit examples of the action @ described in propositions 8 and 10.
Firstly, with A = ((2), (1), (1)) we may takeR(g;) as in equation (37) and

1 00 0 0O
0 0O 0 10
0 01 0 0O
0 00 0O 0 00 01
0 0 00O 0 0 00O
0 0O
0 0O
0 0O
RW@)=[45 o o 1
0 00 OO
0 00 0O

Secondly, withh = ((2), (2)) we have

1—rith) —r_(h) O 1 0 0
R(g1) = ( —re(h)  1—r_(h) 0) R(g2) = <0 1-ri(h+1) —r_(h+1 )
0 0 1 0 —rh+1) 1—r_(h+1
whereh = x; — x,, and
100 0 0O
v(l) = <0 0 0) v(2) = (O 1 0) .
0 0O 0 01
Note thatthis is a representationiof for a choice of the;; deformation parameters determined

by x. By restriction toD% and comparison with the representation in equation (24) we obtain
1— gai, = 1 — r.(h) and hencery, = =22t

T [
Proposition 12. For generic parameter®? is semisimple. The sefs" for all A € I'? form
bases for a complete set of unequivalent irreducible representatidps of

Outline proof. The proof is an induction, following [6]. Suppose that the proposition is true
at leveln — 1. Since no twaR”s restrict to the same sum of irreducibles at this level then they
are distinct. By proposition 22 (in the appendix) they are also simple. This argument holds in
particular in the case df, : S,, where we have already shown this number of simples to be
maximal. It follows that the total contribution to the dimension of the algebra coming from
these simples in general &n!, as there. This saturates the bound already established for
proposition 7, and the proof is complete. |

A useful combinatorial analysis of these representations is given in appendix B.

3.1. On primitive idempotents

The ¢-(anti)symmetrizergthe primitive and central idempotents &f,(¢)) are y*") =
(@@[a]) -ty andy® = (¢@[a])~1y{ [34] where

n n(n—1 n(n—1)
y;il ) — —(=H" 7 Z (_l)—len(w)w l(tn) — C]Z)T Z (qZ)—Ien(w)w

we Bred weBred
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andg®@[n]! = 3", (¢®)'*"™. We have

gy =y giy® = —g%y" T =y YT =y, (40)
Put ez = (i)', and let y=, y* be the unnormalized and normalized = 2
g-(anti)symmetrizers:
2+
=)@ = 42 oy _ 178
yu_yu _q +gl y_y _q2+1
_ @ _q1_ _y_l-s
Yo =V =1-& y =y = m

Another basis ob4 (cf BY) is

= e ()), (g1 +¢HvDgw(Nli, j =1,2,....d}. (41)
Indeed, a manifestly generically simple righ-submodules* = y}v(12)D$ of D4 is spanned
by

BY = {(g1 +q2)v(i)g1U(j)|{is 7} =1{12}}

and similarly for each distinct paji, j}. Modulo these{(g1 + ¢%)v(i)g1v(i)} spans a rank 1
submodule for each We may associate primitive and central idempotents to these modules.

Proposition 13. The primitive and central idempotentstag are

Y =e} v(J)g1<v(J) + Z

—¢
l#J +

v(z)) G=12....4d.

We also have

1= en(e Dt = (0

i#j i#] bji

= v(])(g +3 glv(l_)‘jl)f

i#] bji

Note thaty®Déy™ is spanned byy®@v(i)g1v(j)y™ i < j}, and hence that
y@piy; =0. (42)

Finally in this section we note that the restriction rules for BfemodulesR* under
the restrictiond? C H, are known, since these modules are the standard outer product
representations on specializationSip[21].

4. Quotient algebras with largen limits

Let Fﬁf be the subset df¢ in which each. has each.’ asingle row diagran{or empty). For

k=1,2,...,d we write y; (Fff_l) for the subset OFZ obtained by inserting an empty part
e . —=d—-1

at positionk in eachi. e ',

Definition 6. We define quotient algebrif'f by a short exact sequence

0—>le—>DZ—>5:—>O (43)
J

where/; is the double-sided ideal generated By .
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Proposition 14 follows from the restriction rules in equation (39).

Proposition 14. Generically,Bff is semisimple, with irreducible representations indexed by
—d

r
We wish to bring this algebra into a form suitable for constructing a ‘thermodynamic’ limit.

Consider the righb?-module 7.k = yWp? (let L = D¢y™ be the corresponding left
module). This has a basB™ = {yv(s)|s any signaturg with 4" elements.

ne

Proposition 15. TheD¢-moduleZ® is also a module for the quotied .

Proof. Note thaty?DgY; = Ky®Y; = Oandy/’D¢Y; factors toinclude this, as illustrated
in equation (44).

s i S e

1 e

> Pad

x L]
] mJ
Ve
/
mk mk
i 1
(44)
(We will use variants of this factor trick repeatedly in what follows.) O

We call the modul&; X tensor spacén certain cases it restricts to the tensor representation

of H,, and it is generically isomorphic to it). We will show thatitis a faithn‘_lil-module.
Direct calculation shows the useful result (fog j, b;; # 1)

—q% — b;;
y)y” = ———y"v(ji)y” (45)
which, by means similar to equation (44), may be generalized to
1 _qz - bl“ 1"
yPu( i )yt = LWy i)y (46)
1-b;
for...ij...asignature which is a permutation{df 2, . .., n}. Define
Xn=y" ( D (= v(w’))
w'esS,
and
—q* — b

xij =
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Proposition 16. For w € S, (a permutation of1, 2, ...,n})andd =n
y(ﬂ)v(w)y(l”) — (_1)|en(w)ann (47)
wherek, is a fixed scalar.

Proof. Similarly to equation (45) we have, fdr= 2, {i, j} = {1, 2},

Yy o y"(v(12) — v(2D)). (48)
It follows from equation (46) that there is only one linear combinatisay, required (up to
the overall scalar) to expres& v(w)y®" for anyw. Note that this must obeyXg; = —g?X
for all i, and hence that any such (non-zefowill do. It follows by repeatedly applying a

variant of the factor trick, i.e. as in equation (44), using equation (48) that the given form obeys
these relations. It then follows from the form gf that the scalar takes the given form.

Note thatS, acts on the set of signaturesff by permuting the order of the sequence. The
orbits of this action are indexed by the non-decreasing signaturessupipertof a signature
is the set of those symbols appearing at least once. Non-decreasing signatures are the same
combinatorial objects aseightsin Lie theory [23]. Thus th&egreeof a signature will here
be the number of elements in the sequence (and hénead thedepthof a signature is the
degree of the support (and henge). Further, thedlominance ordeon weights, given by

J J
Azp WY =) Vi
i=1 i=1

induces a partial order on non-decreasing signatures, which we will alsg calhus, for
example, 1123333 and 1222223 are not comparable.

Suppose that an elementmf can be written in the formjv(s)h2, whereh; is an element
of the Hecke subalgebra. This form is said to be@egenerate form of the element if the
signatures hasn — i distinct symbols occurring.

Proposition 17. (i) DIy = K y,—4. (ii) Forn > d, y™Ddy®™ = 0.
Proof. (i) Note firstly that the left-hand side contains the right (we have equality if we restrict
on the left to non-degenerate signatures). We will work inductively on the number of distinct
symbols in a signature (starting frafrand reducing). The base candgself, but to illustrate

the calculations involved we will rather takle— 1. In this case we proceed as follows. For
w=12...d-1 Ietw’; denote the insertion of symbglin the kth position in this sequence.

It follows that (—g 2)¥"1X; = (—g~2)¥ "Xy, for all k, k', where

d
X =Y yPuh)y™. (49)

j=1
Taking into account equation (46) these summands may be brought into a form with signature
a non-decreasing sequence, and hence there are at/robstiem independent. Varying
k' we obtaind — 1 nominally independent linear equations here for elements of the form
y™v(123345...d — 1)y1", in terms of y™v(12345...d — 1d)y"’. Regarding the last
of these as given, we require to show that the nullity of a certain coefficient matrix is zero.
Specifically, taking the linear equations to ¥g+ ¢ 2X;+1 = 0 we must check that

1+q2 X0t g2 xapxa1tq?)  Xapxas(xartq?)

1 +x219 2 1+g72 Xz +q~? x43(xa2+q72)
x21(1 +x31972)  1+x3g 2 1+g72 xa3+q?
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is non-zero. This is a manifestly non-zero algebraic equation in;th@onsider the case of
all x;; small fori > j), sogenericallywe are done for signatures with suppft. .., d — 1}.
Other supports of degree— 1 follow similarly, so we are done at level— 1
For leveld —i consider a sum as above in whicdymbols are insertedinto = 12. . .d—i
(insertions into other non-degenerate subsequences will again work similarly). Here we have

IR NI

(providedi > 1) by an obvious generalization of the above scheme. The number of distinct
symbols in the signature of each summand is by construction atdeast By inductive
assumption we may collect together all summands with(i — 1) or more symbols as given.
The remainder can be characterized by Young diagrams of degtetand depth exactly—i.
Following the argument above put = O for alli > j. Then we can ignore the summands
which do not have non-decreasing signatures. The number of summands still remaining is
d-1
d—i—-1
Consider the subset of constraints constructed in correspondence with our iset of
degenerate non-decreasing signatures as follows. For each signature replace all but the last
occurence of each symbol by a varialildsomel). Now order these constraints in an order
consistent with the order on the corresponding signatures. Itis straightforward to see that the
matrix of coefficients of-degenerate elements for this set of constraints is lower uni-triangular.
(ii) Follows immediately. O

, Soitis sufficientto show that there are atleast this many independent constraints.

For x = ), kwv(i) and wq, wy sequences (possibly empty) lefwixwy) =
> kiv(wiiwy). For examplep(12x54) = ), k;v(12:54). Then

yuADY] =y u(E1l)

whereX; = Z(v(i)) andX is the linear transformation a# given by

(@) = v() +Z
J#

Letz" = ' (v(i)) (i.e. =@ = £ o £, and so on). Then, similarly,

1v(])

y@u(11)r® = yOu(zP 512
and
yMul... 1)y = yWy sl ? w0,

We will write v,[11. .. 11] for v(={" P £""? ... £,1). More generally, ifw is a word in the
symbols12, ..., d containingu; 1's, up 2’s and so on (ofveighty = (uq, i, ...)), thenwe
write v.[w] (resp. v;[w]) for the variation ofv (w) in which theith j in the sequence, counting
from the left (resp. right), is replaced b?yj."l). For example,

v,[3332221111F v(ZP 5335 5,250 =P 5 1).

Proposition 18. (i) For n > d, y"" ¢ >_; DaY; Di. (i) Tensor space is generically faithful,

specifically
(n)Dd @ R
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Proof. (i) If (ii) is true then this follows from proposition 17(ii). (ii) Consider the following
useful identities, obtained by direct calculation. Fe#¢ j

VP g g = rhy@uiE) + (1 - rh)yPu(E;i)

2
1 _ —qbji.
Whererﬂ = 3,1

Y2 E)gr = —¢?yPuT) + (L +¢)yPu(Tii)
YPv(ij)gr = ry@v(ij) + (1 - r9)y@v(ji)
Wherer?i = bj;; and more generally,
YPu(E 5 g =t yPuE sy + A - 1) y@usis)

mo_ 1 _ [xj—x;+m+1]
whererjl. =1 Tl -

It follows from these identities, by repeated application of the factor trick, that the
submodule of tensor space generated by, for example,

y0u(2P 2435 5,28 P 5P 5 1)

is spanned by elements of the same form in which two compoizHis(™ in the generalized
signature may be interchanged if- j. It follows similarly that this module iR*—here in
the case wherg = ((4), (3), (3)). Thus, at least generically, every irreducible representation

—d . . .
of D, occurs as a submodule of tensor space (in fact a dimension count shows that each one
occurs exactly once). O

It follows that the idempotent™ is a sum of one representative primitive idempotent from
each irreducible class. Thusyi?”vﬁj = y™y, D% is simple, i.e. isk* say, for some, € D¢,

thenw; kills all but one of these primitive idempotents, and hel_hfég(")vk is the corresponding
simpleleft module. Note that suitable choices for thes here are the generalized signature
elementsy, [w] of generalized signature weight Thusv,[w]y™v,[w'] = 0 if w, w’ have

different weights. It also follows generically tl'ﬁfy“”ﬁi is the regular representation. Thus

—d —d —d —d —d
D, =D0,y"D, =Y D,y"D,=Y_ Y > Kulwly®v[w] (50)
s

—d *w'eTH
reT, weT* w'eT*

is a decomposition cﬁj into a natural basis exhibiting the matrix structure.
d d . . d
Regall thaty(*")™ denotey*") acting on stringa + 1 ton +d. Thus [y*)®, D] =0
and(y)™ p?,_ is a leftDd-right D¢, ,-module.
Accordingly, for each:, d define functors on categories of left modules

F:DB%,,— mod— D! — mod

FiMe )M

G : D’ —mod— D',, — mod
_d 7

G N Dy 0™ @ N.

Define right module functors similarly. The action®on a module ofR* type is illustrated

in figure 3. The large (dotted) box at the top symbolizes a general elemﬁitpfn the
decomposed regular representation formulation of equation (50).
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| (n)

Figure 3. lllustration of the action of on a module oR* type. A box across strings with label

(») denotesy™ .

Proposition 19. For [d]! # 0 there is an isomorphism of unital algebras

Q:yIpY, v 5 B! (51)
and
A—(19) _ (1d
]—"(R’\) ~ R A — (1 ) el (52)
0 otherwise
G(RY) = RMD, (53)

Proof. Equation (51) follows generically from equation (52). The proof of equation (52) is
well illustrated by the following diagram. Note, in particular, that by the invertibilityg ofve
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may apply the factoyf}d) anywhere along the ‘top’ of the diagram.

1)

[w—ry

It will suffice to consider three cases for the generalized signature. Firstly, note E;(Qtiii
‘higher’ in the diagram thamf’”) thenl < m, so, noting that we havegeneralizedsignature,

we need then only record thie(that is the subscript index) for each term, since the other
details may be recovered unambiguously. In this formalism consider generalized signature
1112233 in the diagram. We see, on ‘commuting through’, that the diagram is zero, using the
identity y2?y® = 0. Next consider generalized signature 1112323. The actiofofon

the last three elements of the signature gives zero, e (y*) = 0. Finally, consider
generalized signature 1123123. We claim that the isomorphism maps this to 1123 (that is to
say, the corresponding basis element at 4). This gives a well-defined map by restriction.

It is an isomorphism by proposition 17(i) (here in the cdse 3, but the general principle

will be clear).

The proof of equation (53) is illustrated by the diagrammatic expression in figure 3. The
action ofG is illustrated on some left modulR* (the lower part of the diagram). The presence
ofthey™ ensures that the part of the signature element between thig4ficsimply involves
a (partial) signature which is a permutation of.124. The corollary to proposition 18 then
tells us that the left module built in this way is as claimed; i.e., the signature weights above
and below they™*¥) must coincide. O

The generic structure ﬁf may be verified immediately from this (by iteration and)
on noting the following.
Proposition 20. The aIgebraS,[fi;l] defined by the short exact sequence

—d 14y=d —d —[d—-1]
0— D”+dy,£ )Dn+d —- Dy, — Dy — 0

has simple modules indexed b/_; v/, (Fz:dl).
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5. Results and applications

PutN = {0,1,2,...}. A weightx of depthN is an element oNY. The degree ot is

|A] = >°; A;. There is an action oy on the set of weights, permuting the indidesThe
orbits of this action may be indexed by theminant weightgthose withx; > A;+1). Recall
that the ordinary Hecke algebra quotiéfit’ has irreducible representations indexed by the set
of dominant weights of deptN and degree. The global (large) versionH”" of H" [34] has
irreducible representations indexed by thes&t* of all dominant weights of deptlV — 1.
Obviously N¥ embeds in the vector spad&’, and the setn¥ ! is isomorphic to the set
AN/, 1,...,1) of dominant weights of deptV modulo the vecto(l, 1, ..., 1).

Proposition 21. The algebraSZ has irreducible representations indexed by the set of weights
of depthd and degree:. The correspondence with the index set given in proposition 14
is (A1, A2, ...) = ((A1), (A2),...). The global algebraif has irreducible representations
indexed byN?/(1, 1, ..., 1).

For example, the following picture shows layers indexing the simple modules of (respectively,
from the top down), c Dy C Dy C Dy C - - -. The horizontal connecting lines within layers
are here as a guide to the eye only; the lihetveerayers indicate the induction/restriction
rules between simple modules.

(b

(1,2,0) (2,1,0)

Now looking down from above inth@, 1, 1) direction (so that point®, 0, 0) and(1, 1, 1)
coincide), we obtain the weight space for the global algebra. A part of this (close to the origin)
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is shown below.

This is the usuald, weight picture [23]. The dominant region is shaded. Each weight
(vertex) corresponds to a fibre of representations generated by the action/GlHenctors.

For example(0, 0, 0) corresponds to the representatiéh, 0) ofBg, 1,11 ofﬁg, 2,2,2)

of 52, and so on. In general, considering an associated physical Hamiltonian on a sequence
of different lattice sizes approaching the thermodynamic limit, a given fibre will pick out the
same part of the spectrum (that is to say, corresponding to the same physical observable) at
each lattice size (cf [34]).

The utility of this picture is particularly striking when one considers the representation
theory for cases in which one or magg.; may be written in the forn{'”T‘l] wherem is a
positive integer. (The validity of the picture in such a case is the subject of a separate paper,
but for the moment let us take it as read.)y farameters may be written in this way we call
it an/-fold critical case Putm; = x; — x;+1(i = 1,...,d, x4+1 = x1) SO thatg; ;+; = %1
Any d — 1 of them;s may be chosen as positive integers, but shgen; = 0 the remaining
one (ny, say) may not. However, i§ is anrth root of unity then fz] = [m + r], so then
ad-fold critical case is possible, with the in a4, given bym/, = my + kr > 0 (somek).
Consider the reflection hyperplanesNf/(1, 1, ..., 1) which have the effect of permuting
adjacent coefficients (and collectively generating an actidf ofOne draws affinereflection
hyperplanes (in our example, lines) on the diagram each at a distar{cesp.m/;) from the
origin. If/ < d —1 we generate a subgroup of thg_; Weyl groups, in thisway. Ifl =d -1
we generate the Weyl group, and & d we generate the (infinite) affine Weyl group. In any
case the closure of the set of hyperplanes under their own reflecting action gives us a partition
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of the space intalcoves, wallsand so on, as described in [35] (these parts are collectively
calledfacetd. Each part will contain some number of weights. The weights in the closure of
the fundamental alcove are representatives of the orbits of the (affine) Weyl group action.

Recall that each weight corresponds to a Specht module, and hence to a simple module
(the head of the Specht module), and hence to a part of the physical spectrum [33] in any
correspondings-spin chain. The point of physical interest here is that Specht modules are
generically simple, so a non-trivial decomposition of a Specht module into simple modules
at someg value signals an increase in Hamiltonian spectrum degeneracy at Hadte (as
in a spectrum level crossing [33]) in any correspondjagpin chain. The content of this
decomposition indicateshich partsof the spectrum are coming together. Extending from [35]
we may firstly assume that there is qpdevel crossing of this kind between two Hamiltonian
eigenvalues unless they are associated to weights in the same (affine) Weyl group orbit. This is
an extension of thinkage principle[25]. Secondly, extending [43] we can say which weights
within an orbit will produce a crossing. In the thermodynamic limit this data depends on the
orbit only through the type of facet it involves. Here we will describe how to recover the data
for weights in the alcoves themselves.

Rotating the picture above through°3@o make contact with the pictures in [35]) and
somewhat expanding the region covered, we havéaalcove diagranas follows.

J9 g1

JAVAVAVAVAVAVAVAVAVAVAVAVAVAYA
ﬁﬂﬂﬂ"ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂy
VV \ANNANNANNN

A INON N NN
WMMMMMMMMMHHHN&
INANNNNNNNNNNNNN
NANANNANNNNNNNANN
VAVAVAVAVAVAVAVAVANAVANAVANAVAVA

PRI
I RIIIIRIIRIIN)

In this picture the case; = m, = 1is shown (note, thisig,» = a»3 = 0). The corresponding
affine reflection lines are marked ando». The solid horizontal line is the closure of this set
(i.e. the reflection of in 02). The dashed horizontal line shows where the affigéine would
appear ify were a root of unity, for example with= 7. The solid circle indicates the location
of the (0, 0, 0) weight in this picture. Every vertex is a weight, but a few other dominant
weights have been marked with circles (namely, from right to (&ftD, 0) and(1, 1, 0) on the
next horizontal layer, and the@, 0, 0), (2, 1, 0) and(2, 2, 0) on the next).

We want thedecompositionsof the Specht modules into simple modules. Here
decomposition means the multiplicity of each of the various composition factor simple modules
in a filtration by such modules (as in [35]). Staying with the above example, i.e dnt3
and, sayx = (3, 2, 1) (andqg not a root of unity—a 2-fold critical case) the decompositions
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are illustrated in the following diagrams:

sA?

=

usA® = 5tA°

The left-hand figure actually shows the decomposition ofpitogective modulegto Specht
modules [24] (the projective modules’ decomposition is of no direct physical interest, but we
can use it to determine the Specht modules’ content by Brauer—Humphreys reciprocity [18]).
The right-hand figure shows the simple module content of the Specht modules. The data are
represented as follows. In each figure there are six alcoves (the reflection lines are here marked
s, t, u), and within each alcove we have placed a subfigure which determines the factor module
content of any module whose weight lies in that alcove. Each subfigure is made up of triangles,
each of which represents a factor in the decomposition of the module in question. The triangle
representing the (ever present) factor module withsidimeweight is indicated by shading.

The attitude of each remaining triangle with respect to this determines the alcove to which the
corresponding factor module belongs. Thus for example (on the left) a projective module in
the fundamental alcove is isomorphic to the corresponding Specht module, while the Specht
module filtration of a projective in the's A° alcove contains one Specht module from each of

the six alcoves. The numbers in the triangles are part of the calculation whereby these results
are determined (a direct generalization of the proceduréffdrdescribed in [35, 43]). The

key to the right-hand picture is analogous, so for example a Specht modulesimthalcove
contains a copy of the correspondisygi® simple together with a copy of thes A° simple in

the same orbit.

A completely concrete example is obtained by working out the dimensions of generic
ordinary Hecke algebra Specht (simple) modules from this construction. These modules
are the simple heads of the Specht modules residing in the dominant alcove (with the same
weight). Thus, for example, it is well known that ttie 1, 1) ordinary Hecke simplén = 3)
is one-dimensional. Thél, 1, 1)~(0, 0, 0) Specht module in our generalized case is six-
dimensional, but our picture shows that this is composed of one copy of each(6f @),
(1,0,2), (0,2,1), (0,0,3), (0,3,3) and (0, 2, 4) simple modules. The last two of these
have zero dimension at = 3. The (0, 0, 3) module has dimension 1 (walks of length 3
from (0O, 0, 0) to (O, 0, 3)). The picture shows that the Specht modules for the two components
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(1,0, 2) and(0, 2, 1) (which each have dimension 3) each consist of the simple for that module
together with the&0, 0, 3) simple (and some nominal dimension zero components). Thus their
simples have dimension3 1 = 2. Overall the dimension of théd, 0, 0) simple is thus
6—2—2—1=1asrequired. The reader will readily verify that this analysis gives the correct
dimensions in complete generality.

5.1. Remarks

It should be possible to analyse representatiori‘odlerived from vertex models and from
cabled (fusion) models in terms of the structure determined here (cf [35]). Work on this
is in progress. This will facilitate a systematic investigation of the relationship between
spectrum and boundary conditions for various quantum spin chains (cf [30, 33]). We have not
concentrated on any particular physical system here, and the physical conditions determined
by a specific choice of the boundary parameteidepend on the system, but our analysis
determines certain properties of the spectrum for all suitable systems. For example, we have
shown that there is a choice of boundary parameters for which the exact spectrum of an ordinary
open boundary model will appear as a subset of the model spectrum, and also that there is a
set of special choices for for which other open boundary models appear in the same way.
(Each of these corresponds roughly to an ABF model [4] in which the heights are bounded
below by a different integer, but the Boltzmann weights are also different—this is the topic for
a separate paper.)

To make contact betweedf andG¢ (i.e. equation (13)) through the generic map

X Zk,-v(i)
i
we compute

R (1Xg1X — Xg1Xg1)

(— g — g2
=q(x,-—x,<)<x,<q—au>—xi<q1—a,»,»)><2 (=L raya ‘”).

The right-hand side vanishesdf;(A; — A;) = (g~ *n; — qirj),i.e.

Ai(q —aij) = hilg ™t — ai)). (54)

Note that equation (54) agrees with equation (30) in the Easeq?", provided that is not
a root of unity.

This means that there is a generic homomorphism &3, 1) to D?(g, a) (noting that
A = A(x) anda = a(x)). Great care must be taken with specific specializations, however. For
exampleg = 1 is potentially a singular case of = I'r% If we choose\; freely withg = 1
thenx; is large and every;; = 1 in the image. A route which sets = ¢ (somex) then
takesg — 1 allows differents;;s, but may be non-generic far This means that there are
important specializations in whidb? and its quotients (such as the blob algebra [37] in the
cased = 2) cannot be realized as homomorphic images of specializatiogé. of

Of particular interest al = 2 is the specialization;, = 0. This corresponds to the
specialization of the blob algebra required for the Temperley—Lieb quotient [36]. Note that the
specializatior;, = 0 corresponds t% = g2, and so is degenerate@{ atq = 1 (i.e.G¢ has
fewer simple modulgsThat is, this specialization is one of those in whi&handd? behave
differently. This degeneracy makp§ the better candidate for physical model building.
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Appendix A. Algebraic generalities and the structure of H,,(q)

We use the following well known result [6, 32, 46].

Proposition 22. Let A be aC-algebra andA’ a subalgebra. Led be anA-module with basis
B such thatM = Ab for eachb € B. LetU;c, B; = B be a partition ofB. If eachB; is a

basis for a simpled’-submodulel,; of M with M; = M; only ifi = j, thenM is a simple
A-module.

~

Proof. Sincethe restrictionis multiplicity free, any proper submoddienust restrict uniquely
to ) ;.o M; as anA’-module, for some\’ C A. ThusB’ = U;cy B; is a basis folM’. But
then forb’ € B’ we haveM’ O Ab' = M, a contradiction. a

Proposition 23. Let A be an algebra over arin®, defined by generators and relations. Bet
be a spanning set fot, of degreel. Suppose there exists a fi’&kd> R such that there exists a
set of inequivalent absolutely irreducible representations ofer K, whose summed squared
dimensions ig/. Then theK-algebra so obtained is semisimple, aAds a free R-module
with basisB.

Proof. The summed squared dimensions of inequivalent irreducibles gives a lower bound on
the dimension ofA over K, but sinceB is still spanning ovek, the degree oB is an upper
bound, hence the dimensionds Thus the set of inequivalent irreducibles is complete, and
there is no radical. Furthermors,is a basis ofA over K. But a linear dependence over
would imply a linear dependence ovEr, so we are done. d

A.1. Deformation generalities

The representation theory @fS,, andCC,: S, is well understood. We now consider the extent
to which these theories inform our study of their deformations.

Let R be an algebraically closed field (it might as well®g Letv = (v%, v?, ..., v/) bea
finite-ordered set of indeterminates aRgbe the ring of polynomials in these indeterminates
with coefficients inR. Let H[v] be a unital finite-dimensional algebra ovRy with basis
B. Let RS be the quotient field ofR, and R(v) be the algebraic closure at,. Let
H(v) = R(v) ®, H[v] be the same algebra ov&(v). The algebra oveR obtained from
H[v] by replacing the indeterminatesby specific elements a®, v = v, say, is here called a
specializatiorof H(v) and is denote@(v;).

Conversely, an algebrd(v) is here called @eformationof an algebra if their exists a
specialization of the parametars—> vg such that(vo) = H. For exampleH,,(¢) overC(q)
is a deformation ofCS, with go = 1.
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We want to port representation theory data between the algétiigsand H (v;). This
task is made difficult by the fact that there is no formal map between them (there are elements
of H(v) for which the ‘substitution’ of; for v makes no sense). We have, rather,

Hv]

RUCR(’U UV Vg

%(U) H(US) (55)

Recall that a fieldF' is a splitting field for a finite-dimensional algeh#aif every irreducible
representation of over F is absolutely irreducible [24, section 5.3]. A splitting figidcan
always be found, since the algebraic closure of any initial field is splitting field, but a much
smaller extension field may suffice. For exam@lés a splitting field forS,,, and the field of
fractions ofZ[¢] is one forH,,. We are interested in the situation in which the algebra may be
defined over a ground ring[v] (or Z[[v]]), say, and that on extending this ring to a splitting
field F the algebrais semisimple, and hence just a sum of matrix algebras of certain dimensions;
and on the other hand that on extendingf@] and then specializing via — v, € C we
also have (for certaim) a semisimple algebra. The semisimple algebras are over different
fields, but the dimension data may be compared. If the dimension data coincide we will say
that algebras arsomorphic

One way to make direct associations between elementq(oj and H(vy) in case
x € RY ®g, H[v] € H(v) is to look for a pair(a,b) € R, x H[v] such thatax = b
andal,, # 0. If such a pair exists thefa/|,,)~1b|,, € H(v,) may be naturally associatedto
(this takes idempotent to idempotent for example). A more dangerous process is the attempt
to extract a limit when both|, andb|,, are zero. More generally, we will say thate R(v)
is well definedat v; if it takes a well defined value when regarded as a function in the usual
analytical sense.

Proposition 24. For [ = 1, every central idempotent of an algebk&v) (as above) is well
defined in every semi-simple specializatiorHgb).

Proof: (by contradiction). Suppose central idempotefarmally blows up at some; where
H(vy) is semisimple (as if the coefficient of some basis eIemeﬁt%ivs{ for example). Since

all coefficients ofl € H(v) are algebraic functions each has at most an algebraic singularity
in v andv, (by the basic theorem of algebraic functions—see, e.g., Ahlfors [1] chapter VI,
theorem 4). Then for some set of non-negative rational numbevih ), p; > Othe element

I'=TJo =i
i

(where the product is over the indeterminates,in’ is theith indeterminate i andv! is

its specialization) is well defined i (vy) and obeyd’l’ = 0. Forl = 1, p; can be chosen
so that!” # 0. ThenH(vs)I’ = I'H(v,) is a hon-empty nilpotent double-sided ideal—a
contradiction! O

Proposition 25. For [ = 1, if any specializatiort (vy) of an algebrat(v) is semisimple, then
H(v) is semisimple. Further, any representatiortfv;) may be obtained, up to isomorphism,
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by substitutingy = v, into some representation of a generating set of elements (of
(although other specializations &f(v) need not be semisimple).

Proof. Supposé(v) has an elemeni(v) in the radical. Then so is any non-vanishing scalar
multiple a’(v), and for some such multipké(vy) is non-vanishing in the radical é{(v,)—a
contradiction. Thusg{(v) is semisimple. Now let = ), I; be the decomposition of the
unit into primitive central idempotents i (v), so the left idealH(v)1; is a direct sum of
isomorphic simple left modules, each isomorphic to a full matrix algebra (see, e.g., Cohn [12]
ch 5, proposition 3.6). Each is well defined in every semisimple specializatior+(fv) (see
above), and each remains distinct, sifide = §;;1;, and primitive, sincek (v) is algebraically
closed. Thus they remain a complete set.

Finally let{w; : j = 1,2,...} be a basis of{(v)I;. Here again eac; has a scalar
multiple w_’]. which is finite inH(v;). Now {w_/].} is still a basis ofH(v)I;, so its image is a
spanning set i (v,)I;. Thus no ideal{I; can have greater dimension in the specialization.
But then to get the same total dimension (dimension of semisimple algebra over algebraically
closed field= sum over of squares of irreducible dimensions) none can have lesser dimension
either. |

Corollary 25.1. Every semisimple specialization of an algebté&) has the same structure.

Thus to determine the structure of sofiév) it is sufficient to determine the structure
of any semisimple specialization. For example, the structuié,¢f) over the rational field
C(q) is isomorphic to that of the semisimple group algeBg, which is well known [13,21]
(see also section 3).

For our purposes the point is that we can use the same trick for deformati@dy; ofS,, .

The problem with these proofs in cdse 1 occurs whed € H(v) diverges with two variables
(sayv?, v?) simultaneously as — v,. In so far as this requires a coincidence, we may be
guided by the likelihood that these propositions will also hold for many algebras with larger

Appendix B. Combinatorial approach to completeness

Alternatively to proposition 12, an illuminating explicit counting argument shows that the
representations given are a complete set. Note

i T (7= S Y i
dim(R") = l_[ ( |)f<i:|l ) dim(}) (56)
i=1

and then usin@wn (dim(w))? = n! [44] we get, after some work,

Z(dim(R*))2 =nld", (57)

A

hence they are a complete set by equation (17). More explicitly still, for example, the table
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below begins to list the irreducibles by dimension fbr= 2 andn = 1,2,3,4, ... (and
selected others):

Irreducible
Dimensions
for
rv=i| ol o|lm B |mp B oo B0 @ F E
0 1 1 11 1 2 1 1 3 2 3 1
/ /
O 1| 2 3 3 4 8 4 5 15 10 15 5
m | ! 3 6 6 10 20 10| 15
B 1 3 6 6 10 20 10
oo |1 4 10 10 20 40 20/ 35
HH 2] s 20 20| 40 8 40
H 1]y 10 10 20 40 20
mo |1 /5 / 15 735 70
HO | 3] 15
H 10
gj 31 15
E 1] 5

Here the dimension of the top-left-hand representation in each ‘box’ isRiim”) = (")
whereA® - r. This means that the contribution to the dimension counting in equation (57)
is (;‘)2 But for the whole box of representations this contribution beco(mes r)!r!(’j)2

(using equation (56) for the diagrams indexing each side of the box) so we have total algebra

dimension
n 2 n
n n! ;
;(n —)lr! (r) —n! ; o =2

(summing binomial coefficients).
For generall the key identity is
n!

Abn,ap<d [T:ih

where the sum is over orderdetuples(mi, mo, ..., my) such than":1 m; = n (multinomial
coefficients). The ‘boxes’ of irreducibles are indexed by sddhples, and in this case the
‘top-left-hand’ representation in each (hypercubical) boxhas((my), (m2), ..., (my)) with
I
dim(R*) = ———
i=1 /M

n

giving total dimension

d | 2

n:
-

Anaf<d N i=1 [Tizymi!
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as required.
To put this in an established context note that the blob alggliga ¢’) [37] (of dimension

(2") =Y, (;‘)2) is the quotient containing the top left representation in each box in the table

n

above (that is, all representations of fokma= ((m), (n — m))). The obvious generalization of
the blob algebrata > 2 (blobs ofd colours) is straightforwardly analysed using the category
theory techniques of [37], however it should be noted that thisig quotient of the algebras
here under investigation faf > 2. The quadratic relation on the boundary operator is crucial
for this correspondence.
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